Given. PA and PB are tangent lines.
PA = PB
[ Since , the length of tangents drawn from an external point to a circle is equal ]
⇒∠PBA=∠PAB=θ [say]InΔPAB,∠P+∠A+∠B=180∘[Since, sum of angles of a triangle=180∘]⇒50∘+θ+θ=180∘⇒2θ=180∘−50∘=130∘⇒θ=65∘Also, OA⊥PA
[Since , tangents at any point of a circle is perpendicular to the radius through the point of contact]
∴∠PAO=90∘⇒∠PAB+∠BAO=90∘⇒65∘+∠BAO=90∘⇒∠BAO=90∘–65∘=25∘