∫dxxn(√ax+b)=−√ax+b(n−1)bxn−1−A∫dxxn−1(√ax+b)+C
⇒∫1+Axxn(√ax+b)dx=−√ax+b(n−1)bxn−1+C
Differentiating on both sides,
1+Axxn(√ax+b)=−xn−1a2(ax+b)−12−(ax+b)12(n−1)xn−2b(n−1)x2n−2
⇒1+Axxn√ax+b=−ax−2(n−1)(ax+b)b(n−1)2xn√ax+b
Simplifying further, it gives
A=2n−32n−2ab