Resolve into partial fractions
2x3+x2−x−3x(x−1)(2x+3)
=1+2x−3x(x−1)(2x+3)
Now assume,
2x−3x(x−1)(2x+3)=Ax+Bx−1+C2x+3
After simplifying this, we get
2x−3x(x−1)(2x+3)=A(x−1)(2x+3)+Bx(2x+3)+Cx(x−1)x(x−1)(2x+3)
A(x−1)(2x+3)+Bx(2x+3)+Cx(x−1)=2x−3
Equating the coefficients, we get
2A+2B+C=0,A+3B−C=0 and −3A=−3
On Solving for A,B and C , we get
A=1,B=−15,C=−85
∴ 2x3+x2−x−3x(x−1)(2x+3)
=1+1x−15(x−1)−85(2x+3)