1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard X
Mathematics
Range of Trigonometric Ratios from 0 to 90 Degrees
θ-1 θ+1+θ+1 θ...
Question
secθ
-
1
secθ
+
1
+
secθ
+
1
secθ
-
1
=
?
(a) 2 sin θ
(b) 2 cos θ
(c) 2 cosec θ
(d) 2 sec θ
Open in App
Solution
(c) 2 cosec θ
sec
θ
−
1
sec
θ
+1
+
sec
θ
+1
sec
θ
−
1
By
rationalising
,
we
get
:
(
sec
θ
−
1
)
(
sec
θ
−
1
)
(
sec
θ
+1
)
(
sec
θ
−
1
)
+
(
sec
θ
+1
)
(
sec
θ
+
1
)
(
sec
θ
−
1
)
(
sec
θ
+
1
)
=
(
sec
θ
−
1
)
(
sec
θ
−
1
)
(
sec
2
θ
−
1
)
+
(
sec
θ
+1
)
(
sec
θ
+
1
)
(
sec
2
θ
−
1
)
=
(
sec
θ
−
1
)
2
tan
2
θ
+
(
sec
θ
+1
)
2
tan
2
θ
=
(
sec
θ
−
1
)
tan
θ
+
(
sec
θ
+1
)
tan
θ
=
sec
θ
−
1
+
sec
θ
+1
tan
θ
=
2
sec
θ
tan
θ
=
2
1
cos
θ
sin
θ
cos
θ
=2cosec
θ
Suggest Corrections
0
Similar questions
Q.
1
sec
θ
−
1
−
1
sec
θ
+
1
=
cot
θ
.
Q.
sin (45° + θ) − cos (45° − θ) = ?
(a) 2 sin θ
(b) 2 cos θ
(c) 0
(d) 1
Q.
If tan
−1
(cotθ) = 2θ, then θ = __________________.
Q.
Prove the following trigonometric identities.
(i)
sec
θ
-
1
sec
θ
+
1
+
sec
θ
+
1
sec
θ
-
1
=
2
cosec
θ
(ii)
1
+
sin
θ
1
-
sin
θ
+
1
-
sin
θ
1
+
sin
θ
=
2
sec
θ
(iii)
1
+
cos
θ
1
-
cos
θ
+
1
-
cos
θ
1
+
cos
θ
=
2
cosec
θ
(iv)
sec
θ
-
1
sec
θ
+
1
=
sin
θ
1
+
cos
θ
2
(v)
sin
θ
+
1
-
cos
θ
cos
θ
-
1
+
sin
θ
=
1
+
sin
θ
cos
θ