wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

secθ+tanθ=p, then obtain the values of secθ,tanθ and sinθ in terms of p.

Open in App
Solution

secθ+tanθ=p
1cosθ+sinθcosθ=p
1+sinθ=pcosθ
(1+sinθ)2=p2cos2θ
1+sin2θ+2sinθ=p2p2sin2θ
1+(1+p2)sin2θ+2sinθp2=0
(1+p2)sin2θ+2sinθ+1p2=0
sinθ=2±4+(p21)(p2+1)2(1+p2)
=2±4+p412(1+p2)=2±p4+32(1+p2)
secθ+tanθ=p
secθtanθ=1/p2secθ=p+1p=1+p2p
secθ=a+p22p
tanθ=psecθ
=p(1+p22p)=p212p .

Hence, this is the answer.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Functions in a Unit Circle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon