wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Seg AD is the median of ABC and AMBC. Prove that(i) AC2=AD2+BC×DM+BC22(ii) AB2=AD2+BC×DM+BC22

Note: (ii) part should be AB2=AD2-BC×DM+BC22

Open in App
Solution

Note: (ii) part should be AB2=AD2-BC×DM+BC22

(i) In ADC,ADC>90° (Given )AC2=AD2+CD2+2CD.DM ...(i) [By Pythagoras' Theorem]Also, CD=12BC ...(ii) [D is the mid-point of seg BC]From (i) & (ii), we get:AC2=AD2+12BC2+212BC.DMAC2=AD2+BC22+BC.DM

(ii) In acute-angled ABD,seg AMside BD. AB2=AD2+BD2-2BD.DM ...(i) [By Pythagoras' Theorem] Also, BD=12BC ...(ii) [D is the mid-point of seg BC]From (i) & (ii), we get: AB2=AD2+12BC2-212BC.DMAB2=AD2+BC22-BC.DM
AB2=AD2-BC×DM+BC22

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon