We have to shown that
1.22+1.32+......+n12.2+22.3+.....+n=3n+53n+1
Now
1.22+1.32+......+n12.2+22.3+.....+n=n∑n=1k(k+1)2k∑n=1k(k+1)
=n∑n=1(k3+2k2+k)k∑n=1(k3+k2)
=n∑n=1k3+2n∑n=1k2+n∑n=1kn∑n=1k3+n∑n=1k2
=n2(n+1)24+2n(n+1)(2n+1)6+n(n+1)2n2(n+1)24+n(n+1)(2n+1)6
=n(n+1)2[n+(n+1)2+2.(2n+1)3+1]n(n+1)2[n+(n+1)2+n(n+1)(2n+1)3]
=3n(n+1)+4(2n+1)+663n(n+1)+2(2n+1)6
=3n2+3n+8n+4+63n2+3n+4n+2
=3n2+11n+103n2+7n+2
=3n2+5n+6n+103n2+3n+4n+2
=n(3n+5)2(3n+5)3n(n+2)+1(n+2)
=(n+2)(3n+5)(n+2)(3n+1)
=3n+53n+1
Hence, we proved the given question.