wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that sinθ1+cosθ+1+cosθsinθ=2cscθ

Open in App
Solution

Let usfirstfind the value of left hand side (LHS) that is sinθ1+cosθ+1+cosθsinθ as shown below:

sinθ1+cosθ+1+cosθsinθ=(sinθ×sinθ)+(1+cosθ)(1+cosθ)sinθ(1+cosθ)=sin2θ+(1+cosθ)2sinθ(1+cosθ)=sin2θ+(1+cos2θ+2cosθ)sinθ(1+cosθ)((a+b)2=a2+b2+2ab)=sin2θ+cos2θ+1+2cosθsinθ(1+cosθ)
=1+1+2cosθsinθ(1+cosθ)(sin2x+cos2x=1)=2+2cosθsinθ(1+cosθ)=2(1+cosθ)sinθ(1+cosθ)=2sinθ=2cscθ=RHS(cscx=1sinx)

Since LHS=RHS,

Hence, sinθ1+cosθ+1+cosθsinθ=2cscθ.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Mathematical Induction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon