wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that nπ+v0|sinx|dx=2n+1cosv , where n is a positive interger and 0v<π

Open in App
Solution

nπ+v0|sinx|dx=v0|sinx|dx+nπ+vv|sinx|dx

In,v0|sinx|dx here sinx is positve as 0v<π

v0|sinx|dx=v0sinxdx=[cosx]v0

v0|sinx|dx=cosv+1

nπ+vv|sinx|dx=nπ0|sinx|dx

as a+nTaf(x)dx=nT0f(x)dx

nπ+vv|sinx|dx=nπ0sinxdx

=n[cosx]π0=n[cosπ(cosO)]

i.e =n[1+1]=2n

RHS =nπ+v0|sinx|dx=cosv+1+2n
Thus RHS=LHS. Hence proved

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 2
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon