1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard X
Mathematics
Range of Trigonometric Ratios from 0 to 90 Degrees
Show that eac...
Question
Show that each of the following is an identity:
(i)
tan
2
θ
(
1
+
tan
2
θ
)
=
sin
2
θ
(ii)
cotθ
+
cosθ
cotθ
-
cosθ
=
1
+
sinθ
1
-
sinθ
Open in App
Solution
(
i
)
LHS=
tan
2
θ
(
1
+
tan
2
θ
)
=
tan
2
θ
sec
2
θ
=
sin
2
θ
cos
2
θ
1
cos
2
θ
=sin
2
θ
=RHS
i.e., LHS=RHS
∴
T
his is an identity
.
(
ii
)
LHS=
cot
θ
+cos
θ
cot
θ
−
cos
θ
=
cos
θ
sin
θ
+
cos
θ
cos
θ
sin
θ
−
cos
θ
=
cos
θ
+
cos
θ
sin
θ
cos
θ
−
cos
θ
sin
θ
=
cos
θ
(
1
+
sin
θ
)
cos
θ
(
1
−
sin
θ
)
=
1
+
sin
θ
1
−
sin
θ
=RHS
i
.
e
.
,
LHS
=
RHS
∴
T
his is an identity
.
Suggest Corrections
0
Similar questions
Q.
Prave that:
(1)
sin
2
θ
cosθ
+
cosθ
=
secθ
(2)
cos
2
θ
1
+
tan
2
θ
=
1
(3)
1
-
sinθ
1
+
sinθ
=
secθ
-
tanθ
(4)
secθ
-
cosθ
cotθ
+
tanθ
=
tanθ
secθ
(5)
cotθ
+
tanθ
=
cosecθ
secθ
(6)
1
secθ
-
tanθ
=
secθ
+
tanθ
(7)
sec
4
θ
-
cos
4
θ
=
1
-
2
cos
2
θ
(8)
secθ
+
tanθ
=
cos
θ
1
-
sinθ
(9) If
t
anθ
+
1
tanθ
=
2
, then show that
tan
2
θ
+
1
tan
2
θ
=
2
(10)
tanA
1
+
tan
2
A
2
+
cotA
1
+
cot
2
A
2
=
sin
A
cos
A
(11)
sec
4
A
1
-
sin
4
A
-
2
tan
2
A
=
1
(12)
tanθ
secθ
-
1
=
tanθ
+
secθ
+
1
tanθ
+
secθ
-
1
Q.
(i)
1
-
tan
2
θ
1
+
tan
2
θ
=
(
cos
2
θ
-
sin
2
θ
)
(ii)
1
-
tan
2
θ
cot
2
θ
-
1
=
tan
2
θ
Q.
Prove that
(
sec
θ
+
cos
θ
)
(
sec
θ
−
cos
θ
)
=
tan
2
θ
+
sin
2
θ
.
Q.
Prove the following trigonometric identities.
(i)
sec
θ
-
1
sec
θ
+
1
+
sec
θ
+
1
sec
θ
-
1
=
2
cosec
θ
(ii)
1
+
sin
θ
1
-
sin
θ
+
1
-
sin
θ
1
+
sin
θ
=
2
sec
θ
(iii)
1
+
cos
θ
1
-
cos
θ
+
1
-
cos
θ
1
+
cos
θ
=
2
cosec
θ
(iv)
sec
θ
-
1
sec
θ
+
1
=
sin
θ
1
+
cos
θ
2
(v)
sin
θ
+
1
-
cos
θ
cos
θ
-
1
+
sin
θ
=
1
+
sin
θ
cos
θ