Show that for any set A and B,
(i) A=(A∩B)∪(A−B)
(ii) A∪(B−A)=A∪B
(i) To show :
A=(A∩B)∪(A−B)
Let x ϵ A
Then either x ϵ(A−B) or x ϵ (A∩B) i.e.
x ϵ (A−B)∪(A∩B)
⇒A⊂(A−B)∪(A∩B)
Conversely,
Let , x ϵ (A∩B)∪(A−B)
⇒x ϵ (A∩B) or x ϵ (A−B)
⇒x ϵA and x ϵB or x ϵA and x/ϵB
⇒x ϵ A [∵ x ϵ B and x/ϵB are contrary to each other ]
∴(A∩B)∪(A−B)⊂A
Hence, A = (A∩B)∪(A−B) proved.
(ii) To show : A∪(B−A)=A∪B
Let , x ϵA∪(B−A)
⇒x ϵ A or x ϵ (B−A)
⇒x ϵ A or x ϵ B and x /ϵ A
⇒x ϵ B
⇒x ϵ A∪B [∵B⊂(A∪B)]
This is true for all x ϵ A∪(B−A)
A∪(B−A)⊂(A∪B)
conversely,
Let , x ϵ A∪B
x ϵA or x ϵB
Case I :
Let, x ϵ A
⇒x ϵ A∪(B−A) [∵A⊂A∪(B−A)]
⇒A∪B⊂A∪(B−A)
Case II:
Let, x ϵ B
⇒x ϵ B−A
⇒x ϵ A∪(B−A)
[ ∵(B−A)⊂A∪(B−A) ]
⇒A∪B⊂A∪(B−A) in both cases.
Hence, A∪(B−A)=A∪B proved.