To show, A=(A∩B)∪(A–B)
Let x∈A
We have to show that, x∈(A∩B)∪(A–B)
In Case I,
x∈(A∩B)
Then, x∈(A∩B)⊂(A∪B)∪(A–B)
In Case II,
x∉A∩B
⇒x∉B or x∉A
∴x∉B(x∉A)
∴x∉A–B⊂(A∪B)∪(A–B)
∴A⊂(A∩B)∪(A–B).......(i)
It is clear that,
A∩B⊂A and (A–B)⊂A
∴(A∩B)∪(A–B)⊂A........(ii)
From (i) and (ii), we obtain
A=(A∩B)∪(A–B)
To prove: A∪(B–A)⊂A∪B
Let x∈A∪(B–A)
⇒x∈A or (x∈B and x∉A)
⇒ (x∈A or x∈B) and (x∈A and x∉A)
⇒x∈(B∪A)
∴A∪(B–A)⊂(A∪B).......(iii)
Next, we show that, (A∪B)⊂A∪(B–A)
Let y∈A∪B
⇒y∈A or y∈B
⇒ (y∈A or y∈B) and (y∈A and y∉A)
⇒y∈A or (y∈B and y∉A)
⇒y∈A∪(B–A)
∴A∪B⊂A∪(B–A)..........(iv)
Hence, from (iii) and (iv), we obtain A∪(B–A)=A∪B.