wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that:
(i) sin 50 cos 85=12sin 3522
(ii) sin 25 cos 115=12(sin 1401)

Open in App
Solution

(i) sin 50 cos 85=12sin 3522
LHS=sin 50 cos 85=2 sin50 cos8522 sin A cos B=sin(A+B)+sin(AB)2sin50 cos852=12[sin(50+85)+sin(5085)]=12[sin135+sin(35)]=12[sin(90+45)sin35][sin(θ)=sinθ]=12[cos45sin35][sin(90+θ)=cosθ]
Now,
cos45=12=12[12sin35]=12sin3522

(ii) sin 25 cos 115=12(sin 1401)
LHS=sin25 cos115=2sin25cos1152
We know that,
2sin A cos B=sin(A+B)+sin(AB)=12[sin(25+115)+sin(25115)]=12[sin140+sin(90)][As (sin(θ)=sinθ)]12[sin(90+50)sin90]12[sin(1401)](Assin90=1)
Hence proved.


flag
Suggest Corrections
thumbs-up
8
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon