Show that:
(i) sin 50∘ cos 85∘=1−√2sin 35∘2√2
(ii) sin 25∘ cos 115∘=12(sin 140∘−1)
(i) sin 50∘ cos 85∘=1−√2sin 35∘2√2
LHS=sin 50∘ cos 85∘=2 sin50∘ cos85∘2∵2 sin A cos B=sin(A+B)+sin(A−B)⇒2sin50∘ cos85∘2=12[sin(50∘+85∘)+sin(50∘−85∘)]=12[sin135∘+sin(−35∘)]=12[sin(90∘+45∘)−sin35∘][∵sin(−θ)=−sinθ]=12[cos45∘−sin35∘][∵sin(90∘+θ)=cosθ]
Now,
cos45∘=1√2=12[1√2−sin35∘]=1−√2sin35∘2√2
(ii) sin 25∘ cos 115∘=12(sin 140∘−1)
LHS=sin25∘ cos115∘=2sin25∘cos115∘2
We know that,
2sin A cos B=sin(A+B)+sin(A−B)=12[sin(25∘+115∘)+sin(25∘−115∘)]=12[sin140∘+sin(−90∘)][As (sin(−θ)=−sinθ)]⇒12[sin(90∘+50∘)−sin90∘]⇒12[sin(140∘−1)](Assin90∘=1)
Hence proved.