wiz-icon
MyQuestionIcon
MyQuestionIcon
5
You visited us 5 times! Enjoying our articles? Unlock Full Access!
Question

Show that :
(i) sin 50° cos 85°=1-2 sin 35°22

(ii) sin 25° cos 115°=12sin 140°-1

Open in App
Solution

(i)

LHS = 2 sin 50° cos 85°= sin 50° + 85° + sin 50° - 85°2 sin A cos B=12sin (A + B) + sin (A - B)= sin 135° + sin -35°2= sin 135° - sin 35°2= cos 45° - sin 35°2 sin 90° + 45° = cos 45°= 1212 - sin 35°= 121 - 2sin 35°2= 1 - 2sin 35°22RHS = 1-2sin 35°22Hence, LHS = RHS

(ii)

LHS = 2sin 25° cos 115°= sin 25°+115° + sin 25°-115°2 sin A cos B = 12sin (A + B) + sin (A - B)= sin 140° + sin -90°2= sin 140° - sin 90°2= sin 140° - 12 RHS = sin 140°-12Hence, LHS = RHS

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Allied Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon