Show that :
(i) sinAsin(B—C)+sinBsin(C—A)+sinCsin(A—B)=0
(ii) sin(B—C)cos(A—D)+sin(C—A)cos(B—D)+sin(A—B)cos(C—D)=0
(i) We have,
LHS=sinAsin(B—C)+sinBsin(C—A)+sinCsin(A—B)=12[2sinAsin(B—C)+2sinBsin(C—A)+2sinCsin(A—B))=12[cos(A—B+C)—cos(A+B—C)+cos(B—C+A)—cos(B+C—A)+cos(C—A+B)—cos(C+A—B)]=12[cos(A—B+C)—cos(A—B+C)—cos(A+B—C)+cos(A+B—C)—cos(B++C—A)+cos(B+C—A)]
=12×0
= RHS
∴sinAsin(B—C)+sinBsin(C—A)+sinCsin(A—B)=0
(ii) We have,
LHS=sin(B—C)cos(A—D)+in(C—A)cos(B—D)+sin(A—B)cos(C−D)=12[sin(B—C)cos(A—D)+2sin(C—A)cos(B—D)+2sin(A−B)cos(C—D)]=12[sin(B—C+A—D)+sin(B—C—A+D)+sin(C—A+B—D)+sin(C−A−B+D)+sin(A—B+C—D)+sin(A—B—C+D)]=12[sin(A+B—C—D)+sin(B+D—C—A)+sin(B+C—A—D)+sin(C+D−A—B)+sin(A+C—B—D)+sin(A+D—B—C))]=12[sin(A+B—C—D)+sin(B+D—C—A)+sin{−(A+D−B−C)}+sin{−(A+B−C−D)}+sin{−(B+D−A−C)}+sin(A+D−B−C)]=12[sin(A+B−C−D)]+sin(B+D−C−A)−sin(A+D−B−C)−sin(A+B−C−D)−sin(B+D−A−C)+sin(A+D−B−C)=12×0 [∵sin(−θ)=−sinθ]=0=RHS∴sin(B−C)cos(A−D)+sin(C−A)cos(B−D)+sin(A−B)cos(C−D)=0