wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that:
(i) sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0
(ii) sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0

Open in App
Solution

(i)

Consider LHS:sin A sin B- C + sin B sin C -A + sin C sin A - B= 122sin A sin B - C + 122sin B sin C - A + 122sin C sin A - B= 12cos A - B - C - cos A + B - C + 12cos B - C - A - cos B + C - A + 12cos C - A - B -cos C + A - B= 12cos A - B + C - cos A + B - C + 12cos B - C + A - cosB + C - A + 12cosC - A + B - cosC + A - B= 12cosA - B + C - 12cos A + B- C + 12cos B - C + A - 12cos B + C - A + 12cos C - A + B - 12cosC + A - B= 12cosA - B + C - 12cosA + B - C + 12cosA + B - C - 12cosB + C - A + 12cosB + C - A - 12cosA - B + C= 0= RHS

(ii)

Consider LHS:sin B - C cos A - D + sin C - A cos B - D + sin A - B cos C - D

= 122sin B - C cos A -D + 122sin C - A cos B - D+122sin A - B cosC- D= 12sin B - C + A - D + sin B - C - A - D + 12sin C - A + B - D + sin C - A - B - D + 12sin A - B + C - D+ sin A - B - C - D= 12sin B - C + A - D + sin B - C - A + D + 12sin C - A + B - D + sin C - A - B +D + 12sin A - B + C - D + sin A - B - C + D=12sin B - C + A - D + sin B - C - A + D + 12sin --C + A - B + D + sin --C + A+ B - D + 12sin--A + B - C + D + sin A - B- C + D=12sinB-C+A-D+12sinB-C-A+D-12sin-C+A-B+D-12sin-C+A+B-D-12sin-A+B-C+D+12sinA-B-C+D=0= RHS

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Functions in a Unit Circle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon