wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that (a+b+c+d)(a3+b3+c3+c3)>(a2+b2+c2+c2)2.

Open in App
Solution

Let assume S=(a+b+c+d)(a3+b3+c3+d3)>(a2+b2+c2+d2)2

S=(a+b+c+d)(a3+b3+c3+d3)(a2+b2+c2+d2)2>0

S=(a4+b4+c4+d4+ab3+ac3+ad3+ba3+bc3+bd3+ca3+cb3+cd3+da3+db3+dc3)

(a4+b4+c4+d4+2(a2b2+a2c2+a2d2+b2c2+b2d2+c2d2))>0

S=(ab3+ba32a2b2)+(ac3+ca32a2c2)+(ad3+da32a2d2)+(bc3+cb32c2b2)

+(bd3+db32d2b2)+(cd3+dc32c2d2)>0

S=ab(ab)2+ac(ac)2+ad(ad)2+bc(bc)2+bd(bd)2+cd(cd)2>0

As a,b,c,d are positive thus square of every term is positive .

Therefore S>0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Parts
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon