Show that limx→∞(√x2+x+1−x)≠limx→∞(√x2+1−x)
RHS limx→∞(√x2+1−x)
By Rationalising,
=limx→∞(√x2+1−x)(√x2+1+x)(√x2+1+x)
=limx→∞x2+1−x2x√1+1x2+x
=limx→∞1x√1+1x2+x
=limx→∞1x⎛⎜⎝1√1+1x2+1⎞⎟⎠=0
Also,
LHS==limx→∞(√x2+x+1−x)
=limx→∞(√x2+x+1−x)(√x2+x+1+x)(√x2+x+1+x)
=limx→∞(x2+x+1−x2)√x2+x+1+x
=limx→∞x(1+1x)x(√1+1x+1x2+1)
=limx→∞1+1x√1+1x+1x2+1
=11+1=12
LHS≠RHS
∴ limx→∞(√x2+x+1−x) is not equal to limx→∞(√x2+x−x).