wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that one value of
⎜ ⎜1+sinπ8+icosπ81+sinπ8icosπ8⎟ ⎟83 is 1

Open in App
Solution

To show:
⎜ ⎜1+sinπ8+icosπ81+sinπ8icosπ8⎟ ⎟83=1
Solution:
⎜ ⎜1+sinπ8+icosπ81+sinπ8icosπ8⎟ ⎟= ⎜ ⎜1+cos(π2π8)+isin(π8π8)1+cos(π2π8)isin(π2π8)⎟ ⎟
=1+cos3π8+isin3π81+cos3π8isin3π8
=2cos23π16+i2sin3π16cos3π162cos23π16i2sin3π16cos3π16
=2cos3π16[cos3π16+isin3π16]2cos3π16[cos3π16isin3π16]
=(cos3π16+isin3π16)2
=cos3π8+isin3π8
Now,
⎜ ⎜1+sinπ8+icosπ81+sinπ8icosπ8⎟ ⎟83= (cos3π8+isin3π8)83
=cosπ+isinπ
=1+i(0)
=1
Hence, ⎜ ⎜1+sinπ8+icosπ81+sinπ8icosπ8⎟ ⎟83=1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon