1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Properties Derived from Trigonometric Identities
Show that si...
Question
Show that
sin
−
1
4
5
+
sin
−
1
5
13
+
sin
−
1
16
65
=
π
2
Open in App
Solution
sin
−
1
4
5
+
sin
−
1
5
13
+
sin
−
1
16
65
=
π
2
sin
−
1
4
5
+
sin
−
1
5
13
=
π
2
−
sin
−
1
16
65
sin
−
1
4
5
+
sin
−
1
5
13
=
cos
−
1
16
65
sin
−
1
4
5
=
A
⇒
sin
A
=
4
5
⇒
cos
A
=
3
5
sin
−
1
5
13
=
B
⇒
sin
B
=
5
13
⇒
cos
B
=
12
13
cos
(
A
+
B
)
=
cos
A
cos
B
−
sin
A
sin
B
=
3
5
×
12
13
−
4
5
×
5
13
=
36
65
−
20
65
=
16
65
cos
(
A
+
B
)
=
16
65
A
+
B
=
cos
−
1
16
65
sin
−
1
4
5
+
sin
−
1
5
13
=
cos
−
1
16
65
sin
−
1
4
5
+
sin
−
1
5
13
=
π
2
−
sin
−
1
16
65
∴
sin
−
1
4
5
+
sin
−
1
5
13
+
sin
−
1
16
65
=
π
2
Suggest Corrections
0
Similar questions
Q.
Solve the following equations .
sin
−
1
5
x
+
sin
−
1
12
x
=
π
2
Q.
Show that
sin
60
∘
cos
45
∘
+
cos
60
∘
sin
45
∘
=
√
3
+
1
2
√
2
Q.
If
−
1
≤
x
,
y
≤
1
such that
sin
−
1
x
+
sin
−
1
y
=
π
2
,
find the value of
cos
−
1
x
+
cos
−
1
y
.
Q.
If
sin
−
1
x
+
tan
−
1
x
=
π
2
then prove that:
2
x
2
=
√
5
−
1
Q.
Show that
√
1
+
sin
θ
1
−
sin
θ
=
1
+
sin
θ
cos
θ
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Property 5
MATHEMATICS
Watch in App
Explore more
Properties Derived from Trigonometric Identities
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app