wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that sinθ-cosθ+1sinθ+cosθ-1=1secθ-tanθ


Open in App
Solution

To prove:

sinθ-cosθ+1sinθ+cosθ-1=1secθ-tanθ

Proof:

L.H.S=sinθ-cosθ+1sinθ+cosθ-1

=(sinθ)-(cosθ-1)(sinθ)+(cosθ-1) ( negative sign is taken common from the term cosθ-1)

=(sinθ)-(cosθ-1)(sinθ)+(cosθ-1)×(sinθ)-(cosθ-1)(sinθ)-(cosθ-1) (Rationalizing the denominator)

=(sinθ)-(cosθ-1)2(sinθ)2-(cosθ-1)2 a2-b2=(a+b)(a-b)

=sin2θ+(cosθ-1)2-2sinθ(cosθ-1)sin2θ-(cos2θ+1-2cosθ) a2-b2=(a+b)(a-b)&a-b2=a2+b2-2ab

=sin2θ+cos2θ+(1)2-2cosθ-2sinθcosθ+2sinθsin2θ-cos2θ-1+2cosθ a-b2=a2+b2-2ab

= 1+1-2cosθ-2sinθcosθ+2sinθ1-cos2θ-cos2θ-1+2cosθ (sin2θ+cos2θ=1)

=2-2cosθ-2sinθcosθ+2sinθ-2cos2θ+2cosθ

=1-cosθ-sinθcosθ+sinθ-cos2θ+cosθ ( 2 is cancelled because it is common in numerator and denominator.)

=(1-cosθ)+sinθ(1-cosθ)cosθ(1-cosθ) [sinθ is taken common from (-sinθcosθ+sinθ) term of the numerator and cosθ is taken common from (-cos2θ+cosθ) term of the denominator]

=1+sinθcosθ [ (1-cosθ) is taken common and cancelled from the numerator and denominator]

=1cosθ+sinθcosθ

=secθ+tanθ 1cosθ=secθand sinθcosθ=tanθ

=secθ+tanθ×(secθ-tanθ)(secθ-tanθ) [Multiplying the numerator and denominator with (secθ-tanθ)]

=sec2θ-tan2θ(secθ-tanθ)

=1secθ-tanθ [sec2θ-tan2θ=1]

=R.H.S

Thus,sinθ-cosθ+1sinθ+cosθ-1=1secθ-tanθ

Hence Proved


flag
Suggest Corrections
thumbs-up
8
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Componendo and Dividendo
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon