Show that the general solution of the differential equation dydx+y2+y+1x2+x+1=0 is given by (x+y+1)=A(1−x−y−2xy), where A is a parameter.
Given, differential equation is
dydx+y2+y+1x2+x+1=0⇒dyy2+y+1+dxx2+x+1=0
On integrating both sides, we get
∫dyy2+y+1+∫dxx2+x+1=C⇒∫dyy2+y+1+(12)2−(12)2+∫dxx2+x+1+(12)2−(12)2=C⇒∫dy(y+12)2+(1−14)+∫dx(x+12)2+(1−14)=C⇒∫dy(y+12)2+(√32)2+∫dx(x+12)2+(1−14)=C⇒2√3tan−1(y+12√32)+2√3tan−1(x+12√32)=C
[∵∫1a2+x2dx=1atan−1xa]
⇒tan−1(2y+1√3)+tan−1(2x+1√3)=√3C2=k (say)
⇒tan−1⎡⎢⎣2y+1√3+2x+1√31−(2y+1√3)(2x+1√3)⎤⎥⎦=k
[∵tan−1x+tan−1y=tan−1(x+y1−xy)]
⇒tan−1⎡⎣2y+1+2x+1√31−(4xy+2x+2y+13)⎤⎦=k⇒2√3(x+y+1)3−(4xy+2x+2y+1)=tan k⇒2√3(x+y+1)2(1−x−y−2xy)=tan k⇒x+y+1=1√3tan k(1−x−y−2xy)
Let, A=1√3tan k is an arbitrary constant.
⇒x+y+1=A(1−x−y−2xy)
Hence, the given result is proved.