Let Tr=10,Tq=11,Tr=12
∴ARp−1=10,ARq−1=11,ARr−1=12
∴Rp−q=1011,Rq−r=1112
or (1011)1/(p−q)=(1112)1/(q−r)=R
or (1011)q−r=(1112)p−q
or (10)q−r(12)p−q=(11)p−q+q−r=(11)p−r
Now L.H.S. of above is clearly even whereas R.H.S. is an odd number which is not possible. Hence 10,11,12 cannot be the terms of a signle G.P.