To show that the series
1+2p2!+3p3!+4p4!+...is convergent for all values of p.
Here,
an=npn!
We are using series ratio test
If there exists an N so that for all n≥N, an≠0
and L=limn→∞∣∣∣an+1an∣∣∣
1 ) If L<1, then ∑an converges
2) If L>1, then ∑an diverges
3) If L=1, then the ratio test is inconclusive
limn→∞∣∣
∣
∣
∣
∣∣(n+1)p(n+1)!npn!∣∣
∣
∣
∣
∣∣
limn→∞∣∣∣(n+1)p(n+1)np∣∣∣
limn→∞∣∣∣(n+1)p−1np∣∣∣
On applying limit, we get
L=limn→∞∣∣∣(n+1)p−1np∣∣∣
L=0
Since, L<1
Hence, the given series converges.