wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that the value of tanxtan3x wherever defined never lies between 13 and 3.

Open in App
Solution

k=tanxtan3x=tanxtan(x+2x)
=tanxtan2x+tanx1tan2x(tanx)

[tanx][1tanx(2tanx1tanx)]2tanx1tan2x+tanx

=(tanx)[1tan2x2tan2x](tanx)[2+1tan2x]
k=13tan2x3tan2x Put tanx=t
k=13t23t23kkt2=13t2
=t2(3k)=13k
=t2=(13k)(3k)
f2>0
(3k1)(3k)>0
(3k1)(3k)(3k)2>0
(3k1)(3k)>0
k(,13)(3,)
tanxtan3x(,13)(3,)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Geometric Progression
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon