The determinant
det(A)=let(a1,a2,a3) is an alternatively mulk linear form that means
det(a1+αa2,a2,a3)<det(a1,a2,a3)+det(a2,a2,a3)
Because det is linear is first argument and mulk linear form
Because it is in alternating form exchanging from two argument change the sign
det(a1,a2,a3)=−det(a2,a2,a3)
Which means det(a2,a2,a3) vanishes
The leads to
det(a1+a2,a2,a3)=det(a1,a2,a3)
Similar for another arguments
Using two property we simplify determinant
d=⎡⎢⎣y+zxxyz+xyzzx+y⎤⎥⎦=⎡⎢⎣0−2z−2yyz+xyzzx+y⎤⎥⎦=2⎡⎢⎣0−z−yyz+xyzzx+y⎤⎥⎦=2⎡⎢⎣0−z−yyx0z0x⎤⎥⎦=−2⎡⎢⎣0zyyx0z0x⎤⎥⎦=2⎡⎢⎣0yzyzzzx0⎤⎥⎦
Ifx=y,x=0 then d=0 and formula holds. If two variables x,y and z is zero then one of the columns we have
det(0,a2,a3)=det(0+a2,a2,a3)=det(a2,a2,a3)=0
If x=0
=2⎡⎢⎣0yzy00z00⎤⎥⎦=2yz⎡⎢⎣011y00z00⎤⎥⎦=2yz⎡⎢⎣011y00z00⎤⎥⎦=−2yz⎡⎢⎣0110y00z0⎤⎥⎦=0d=2z⎡⎢⎣0yzy0xzx0⎤⎥⎦=2xyz⎡⎢⎣0xyxzyz0xzyzxy0⎤⎥⎦=2xyz⎡⎢⎣0xyxzyz02xzyz0−2xz⎤⎥⎦=4y⎡⎢⎣0xyxz001yz0−xz⎤⎥⎦=4y⎡⎢⎣0xy0000yz01⎤⎥⎦=4xyz⎡⎢⎣010001100⎤⎥⎦=−4xy⎡⎢⎣010100001⎤⎥⎦=4xyz⎡⎢⎣100010001⎤⎥⎦=4xyz