Simlify: √−17144−i
We know that,
(a−b)2=a2+b2−2ab
Now, let,
−2ab=−i
ab=i
Now, consider −17144. We can write it as,
−17144=64−819×16=49−916
Thus,
√−17144−i=√49−916−i
=√(23)2+(i)2(34)2−2×(23)×(3i4)
=√(23−3i4)2
=±(23−3i4)
Hence, this is the required
result.