We have,
2x2+y2+2xy=5 ..........(1)
Since,
x=(2cosθ−sinθ) and y=(cosθ−3sinθ)
So,
2(2cosθ−sinθ)2+(cosθ−3sinθ)2+2×(2cosθ−sinθ)×(cosθ−3sinθ)=5
2(4cos2θ+sin2θ−4cosθsinθ)+(cos2θ+9sin2θ−6cosθsinθ)+2(2cos2θ−6sinθcosθ−sinθcosθ+3sin2θ)=5
2(4cos2θ+sin2θ−4cosθsinθ)+(cos2θ+9sin2θ−6cosθsinθ)+2(2cos2θ−7sinθcosθ+3sin2θ)=5
8cos2θ+2sin2θ−8cosθsinθ+cos2θ+9sin2θ−6cosθsinθ+4cos2θ−14sinθcosθ+6sin2θ=5
13cos2θ+17sin2θ−28cosθsinθ=5
13(cos2θ+sin2θ)+4sin2θ−28cosθsinθ=5
13+4sin2θ−28cosθsinθ=5
4sin2θ−14×2cosθsinθ=−8
4sin2θ−14sin2θ+8=0
Hence, this is the answer.