wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Simplify 2x2+y2+2xy=5 where, x=(2cosθsinθ) and y=(cosθ3sinθ).

Open in App
Solution

We have,
2x2+y2+2xy=5 ..........(1)

Since,
x=(2cosθsinθ) and y=(cosθ3sinθ)

So,
2(2cosθsinθ)2+(cosθ3sinθ)2+2×(2cosθsinθ)×(cosθ3sinθ)=5

2(4cos2θ+sin2θ4cosθsinθ)+(cos2θ+9sin2θ6cosθsinθ)+2(2cos2θ6sinθcosθsinθcosθ+3sin2θ)=5

2(4cos2θ+sin2θ4cosθsinθ)+(cos2θ+9sin2θ6cosθsinθ)+2(2cos2θ7sinθcosθ+3sin2θ)=5

8cos2θ+2sin2θ8cosθsinθ+cos2θ+9sin2θ6cosθsinθ+4cos2θ14sinθcosθ+6sin2θ=5

13cos2θ+17sin2θ28cosθsinθ=5

13(cos2θ+sin2θ)+4sin2θ28cosθsinθ=5

13+4sin2θ28cosθsinθ=5

4sin2θ14×2cosθsinθ=8

4sin2θ14sin2θ+8=0

Hence, this is the answer.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon