Simplify: 7√3√10+√3−2√5√6+√5−3√2√15+3√2.
7√3√10+√3−2√5√6+√5−3√2√15+3√2
Lets take 7√3√10+√3
Lets do rationalize the denominator,
Since, the R.F of √10+√3 is √10−√3
7√3√10+√3
=7√3√10+√3×√10−√3√10−√3
=7√3(√10−√3)(√10)2−(√3)2
=7√30−2110−3
=7(√30−3)7
=√30−3
⇒7√3√10+√3=√30−3---(1)
Lets take 2√5√6+√5
Lets rationalize the denominator,
Since, RF of √6+√5 is √6−√5
2√5√6+√5
=2√5√6+√5×√6−√5√6−√5
=2√5(√6−√5)(√6)2−(√5)2
=2√30−106−5
=2√30−10
⇒2√5√6+√5=2√30−10 ---(2)
Lets take 3√2√15+3√2
Lets rationalize the denominator,
Since, RF of √15+3√2 is √15−3√2
3√2√15+3√2
=3√2√15+3√2×√15−3√2√15−3√2
=3√30−18(√15)2−(3√2)2
=3(√30−6)15−18
=3(√30−6)−3
=6−√30
⇒3√2√15+3√2=6−√30---(3)
Now, from (1), (2) and (3),
7√3√10+√3−2√5√6+√5−3√2√15+3√2
=√30−3−(2√30−10)−(6−√30)
=√30−3−2√30+10−6+√30
=2√30−2√30+1
=1
∴7√3√10+√3−2√5√6+√5−3√2√15+3√2=1.