wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solution of differential equation x2=1+(xy)1dydx+(xy)2(dydx)22!+(xy)3(dydx)33!+.... is

Open in App
Solution

Given,

x2=1+(xy)1dydx+(xy)1dydx2!+(xy)1dydx3!+....

x2=1+(xy)1dydx+((xy)1dydx)22!+((xy)1dydx)33!+....

x2=e(xy)1dydx (Using ex=1+x+x22!+x33!+.... )

Taking log of both sides,

logex2=(xy)1dydx

logex2.xdx=ydy

Integrating both sides, we get,

logex2.xdx=ydy

Putting x2=t on Left-hand side, we get,

12logetdt=ydy (Sincedt=2xdx)

12tloget12t=y22+C (Usinglogexdx=xlogexx+C)

12x2logex212x2=y22+C

y2=2x2logexx2+C

Hence the solution of given differential equation is y2=2x2logexx2+C


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon