Given,
x2=1+(xy)−1dydx+(xy)−1dydx2!+(xy)−1dydx3!+....
⇒x2=1+(xy)−1dydx+((xy)−1dydx)22!+((xy)−1dydx)33!+....
⇒x2=e(xy)−1dydx (Using ex=1+x+x22!+x33!+.... )
Taking log of both sides,
⇒logex2=(xy)−1dydx
⇒logex2.xdx=ydy
Integrating both sides, we get,
⇒∫logex2.xdx=∫ydy
Putting x2=t on Left-hand side, we get,
⇒12∫logetdt=∫ydy (Sincedt=2xdx)
⇒12tloget−12t=y22+C (Using∫logexdx=xlogex−x+C)
⇒12x2logex2−12x2=y22+C
⇒y2=2x2logex−x2+C
Hence the solution of given differential equation is y2=2x2logex−x2+C