No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
x≤−3 or x≥3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
−3≤x≤3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C−3≤x≤3 For x2+2|x|−15>0 Case 1. x≥0 x2+2x−15>0⇒x(x+5)−3(x+5)>0⇒(x−3)(x+5)>0⇒x∈(−∞,−5]∪[3,∞)∴x∈[3,∞) Case 2. x<0 x2−2x−15<0⇒x2−5x+3x−15<0⇒x(x+5)+3(x−15)<0⇒(x+3)(x−5)<0 ⇒x∈(−3,5) ∴x∈(−3,0) Hence x∈(−3,3)