wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solution of the differential equation (dydx)2+dydx(cosx+secx)+1=0 is/are:

A
y=ln|secx+tanx|+c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
y=ln|secx+tanx|+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
y=sinx+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
y=cosx+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A y=ln|secx+tanx|+c
(dydx)2+dydx(cosx+secx)+1=0
dydx(cosx+secx)±(cosxsecx)22
dydx=(cosxsecx)±(cosxsecx)2
dydx=secx & dydx=cosx
y=ln|secx+tanx|+c & y=sinx+c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Logarithmic Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon