The correct option is C [log135,1]
√13x−5≤√2(13x+12)−√13x+5
Above equation is valid when 13x−5≥0⇒13x≥5
Taking log on base 13
⇒x≥log135 .....(1)
On substituting t=13x, we get
√t−5+√t+5≤√2(t+12)
⇒t−5+t+5+2√t2−25≤2t+24
⇒√t2−25≤12
⇒t2≤169
⇒t≤13
⇒13x≤13
⇒x≤1 ....(1)
From (1) & (2), we get
x∈[log135,1]
Ans: C