Prove:1+tan2A1+cot2A=1-tanA1-cotA2=tan2A.
We know that
1+tan2A=sec2A1+cot2A=cosec2A
Consider LHS
1+tan2A1+cot2A=sec2Acosec2A[usingidentities]=1cos2A1sin2A[∵secA=1cosA,cosecA=1sinA]=sin2Acos2A=tan2A
Consider RHS
1-tanA1-cotA2=1-sinAcosA1-cosAsinA2=cosA-sinAcosAsinA-cosAsinA2=cosA-sinA2cos2AsinA-cosA2sin2A=cosA-sinA2cos2AcosA-sinA2sin2A=1cos2A1sin2A=sin2Acos2A=tan2A
Since, the values of LHS and RHS are the same.
Hence proved.
loge(n+1)−loge(n−1)=4a[(1n)+(13n3)+(15n5)+...∞] Find 8a.
The product of the following series (1+11!+12!+13!+...) × (1−11!+12!−13!+...) is