wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove:1+tan2A1+cot2A=1-tanA1-cotA2=tan2A.


Open in App
Solution

We know that

1+tan2A=sec2A1+cot2A=cosec2A

Consider LHS

1+tan2A1+cot2A=sec2Acosec2A[usingidentities]=1cos2A1sin2A[secA=1cosA,cosecA=1sinA]=sin2Acos2A=tan2A

Consider RHS

1-tanA1-cotA2=1-sinAcosA1-cosAsinA2=cosA-sinAcosAsinA-cosAsinA2=cosA-sinA2cos2AsinA-cosA2sin2A=cosA-sinA2cos2AcosA-sinA2sin2A=1cos2A1sin2A=sin2Acos2A=tan2A

Since, the values of LHS and RHS are the same.

Hence proved.


flag
Suggest Corrections
thumbs-up
308
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon