30(x2+1x2)−77(x−1x)−12=0
∵ x2+1x2=[(x−1x)2+2]
∴ 30x2+1x2=[(x−1x)2+2]−7777(x−1x)−12=0
Let x−1x=m
30[m2+2]−77−12=0
30m2−77m+48=0
30m2−45m−32m+48=0
15m(2m−3)−16(2m−3)=0
(2m−3)(15m−16)=0
2m−3=0or 15m−16=0
2m=3 or 15m=16
∴ m=32 or m=1615
By resubstituting
m=x−1x
∴ x−1x=32 or x−1x=1615
x2−1=3x2 or x2−1=16x15
2x2−2=3x or 15x2−15=16x
2x2−3x−2=0 or 15x2−16x−15=0
2x2−4x+x−2=0 or 15x2−25x+9x−15=0
2x(x−2)+1(x−2)=0 or 5(3x−5)+3(3x−5)=0
(x−2)(2x+1)=0 or (3x−5)(5x+3)=0
(x−2)=0 or 3x−5=0
x=2 or 3x=5
and 2x+1=0 or x=53
2x=−1 or x=53
2x=−1 and
x=−12 or 5x+3=0
5x=−3
x=−3/5
∴ The roots of the given equation are 2,−12,53,−35