The correct option is A x = 1, y = 2, z = 3
3x - 2y + z = 2 .....(1)
2x + 3y - z = 5.....(2)
x + y + z = 6 .....(3)
eqn(1)+eqn(2)3x−2y+z=22x+3y−z=5
__________________
5x+y=7.............(4)
eqn(2)+eqn(3)2x+3y−z=5x+y+z=6
__________________
3x+4y=11.............(5)
eqn(4)×4−eqn(5)20x+4y=28−3x−4y=−11
__________________
17x=17[x=1].............(6)
Substituting eqn(6) in eqn(4), we get,
5(1)+y=7[y=2]...........(7)
Substituting eqn(6) and eqn (7) in eqn(3), we get,
1+2+z=6[z=3]...........(8)
Ans:
[x = 1]
[y = 2]
[z = 3]
Verification:
Substituting the values of x,y and z in eqn(2), we get,
LHS=2(1)+3(2)−3=2+6−3=5=RHS