Solve (ab+1)2 - (ab)2 where, b - a = 1
a2 + b2
(a+1)2 + (b+1)2
b2
a2 + (b+1)2
(ab+1)2 - (ab)2 ⇒(ab+1)2−(ab)2=(a(a+1)+1)2−(a(a+1))2 [∵ b = 1 + a] =a2×((a+1)2+1+2a(a+1))−a2×(a+1)2 =2a2+2a+1 =a2+2a+1+a2 =(a+1)2+a2 =b2+a2
Solve (ab+1)2 - (ab)2 where, b - a = 1.