2sin68∘cos22∘−2cot15∘5tan75∘−3tan45∘tan20∘tan40∘tan50∘tan70∘5
=2sin68∘cos(90∘−68∘)−2cot15∘5tan(90∘−15∘)−3×1(tan20∘⋅tan40∘)(tan50∘⋅tan70∘)5
=2sin68∘sin68∘−2cot15∘5cot15∘−35(tan20∘⋅tan40∘)(tan50∘⋅tan70∘)
[∵sin(90∘−θ)=cosθ and tan(90∘−θ)=cotθ]
=2−25−35(tan20∘⋅tan40∘)(tan50∘⋅tan70∘)
=85−35(tan20∘⋅tan40∘⋅tan(90∘−40∘)⋅tan(90∘−20∘))
=85−35(tan20∘⋅tan40∘⋅cot40∘⋅cot20∘)
=85−35(tan20∘⋅cot20∘⋅tan40∘⋅cot40∘)
=85−35 (∵tanθ⋅cotθ=1)
=1