Given:
x+12+y−13=8
3x+32×3+2y−23×2=8
3x+36+2y−26=8
3x+3+2y−26=8
3x+2y+1=48
3x+2y=47−−−−−−(1)
x−13+y+12=9
2x−22×3+3y+33×2=9
2x−26+3y+36=9
2x−2+3y+36=9
2x+3y+1=54
2x+3y=53 -------- (2)
By solving (1) and (2)
3x+2y=47−−−−−−−×3
2x+3y=53−−−−−−−×2
9x+6y=141
(−)
4x+6y=106
5x=35
x=7
Substituting the value of x in (1)
3(7)+2y=47
21+2y=47
2y=47−21
2y=26
y=13
So, x=7 and y=13