wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve:
π20(2logsinxlogsin2x)dx

Open in App
Solution

π/20(2logsinxlogsin2x)dx

I=π/20(2logsinxlog(2sinxcosx))dx

=π/20(2logsinxlog2logsinxlogcosx)dx
=π/20(logsinxlog2logcosx)dx

=π/20logsinxπ/20log2dxπ/20logcos(π2x)dx

[a0f(x)dx=a0f(ax)dx]

=π/20logsinxπ/20log2dxπ/20logsinxdx

=π/20log2dx

=log2[x]π/20=log2[π20]

π2log(12).

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Special Integrals - 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon