Consider
∫5x−13x2+x+2dx
=∫6x+1−x−23x2+x+2dx
=∫6x+13x2+x+2dx−16∫6x+13x2+x+2dx−16∫113x2+x+2dx
=56∫6x+13x2+x+2dx−116∫dx3x2+x+2
=56log(3x2+x+2)−116∫dx3(x2+x3+23)
=56log(3x2+x+2)−1118∫dx(x2+2x6+136−136+23)
=56log(3x2+x+2)−1118∫dx((x+16)2+2336)
=56log(3x2+x+2)−1118×6√23tan−1⎛⎜
⎜
⎜
⎜⎝x+16√236⎞⎟
⎟
⎟
⎟⎠+C
=56log(3x2+x+2)−113√23tan−1(6x+1√23)+C