wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve cos2θdθcos2θ+4sin2θ.

Open in App
Solution

Solution :-
I=cos2xcos2x+4sin2xdx

=cos2xcos2x+4sin2x.sec4xsec4xdx

=sec2xdxsec2x+4tan2xsec2x

=sec2xdxsec2x(1+4tan2x)

Now tanx=t

sec2xdx=dt

I=dt(1+t2)(1+4t2)=(A1+t2+B1+4t2)dt

Now comparing 1=A(1+4t2)+B(1+t2)

A+B=1 4A+B=0

A=1/3 B=4/3

I=1311+t2dt+4311+4t2dt

We know, 1a2+x2dx=1atan1(xa)+c

I=13tan1t+43tan1(2t)2+c

Putting the value of t as tanx

I=13tan1(tanx)+23tan1(2tanx)+c

=13x+23tan1(2tanx)+c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Parts
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon