∫sin−1x−cos−1xsin−1x+cos−1xdx
We know that sin−1x+cos−1x=π2
Substituting this, we get
⇒2π∫sin−1x+cos−1x dx
⇒2π∫sin−1x dx+2π∫cos−1x dx
Use integration by parts, we get
⇒2π∫sin−1x .1 dx+2π∫cos−1x .1 dx
⇒2π(sin−1x.x−∫x√1−x2dx)+2π(cos−1x.x+∫x√1−x2dx)
⇒2π(xsin−1x−12∫2x√1−x2dx)+2π(xcos−1x+12∫2x√1−x2dx)
Take 1−x2=t ⇒−2xdx=dt
Substituting this we get
⇒2π(xsin−1x+12∫dt√t)+2π(xcos−1x−12∫dt√t)
⇒2π(xsin−1x+12√t×2)+2π(xcos−1x−12√t×2)
⇒2π(xsin−1x+√t)+2π(xcos−1x−√t)
⇒2π(xsin−1x+√1−x2+xcos−1x−√1−x2)