wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve sin1xcos1xsin1x+cos1xdx

Open in App
Solution

sin1xcos1xsin1x+cos1xdx

We know that sin1x+cos1x=π2

Substituting this, we get

2πsin1x+cos1x dx

2πsin1x dx+2πcos1x dx

Use integration by parts, we get

2πsin1x .1 dx+2πcos1x .1 dx

2π(sin1x.xx1x2dx)+2π(cos1x.x+x1x2dx)

2π(xsin1x122x1x2dx)+2π(xcos1x+122x1x2dx)

Take 1x2=t 2xdx=dt

Substituting this we get

2π(xsin1x+12dtt)+2π(xcos1x12dtt)

2π(xsin1x+12t×2)+2π(xcos1x12t×2)

2π(xsin1x+t)+2π(xcos1xt)

2π(xsin1x+1x2+xcos1x1x2)


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Parts
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon