Given: ∫√1+x2x2dx
Apply the integration by parts,
u=√1+x2,v=1x2
∫√1+x2x2dx=−√1+x2x−∫−1√1+x2dx
=−√1+x2x−(−ln∣∣√x2+1+x∣∣)
=−√1+x2x+ln∣∣√x2+1+x∣∣+C
Hence, the required result is found.