I=∫x4+1x6+1dx
=∫(x4+1)(x6+1)×(x2+1)(x2+1)dx
=∫x6+x2+x4+⊥(x6+1)(x2+1)dx
=∫(x6+1)+x2(x2+1)(x6+1)(x2+1)dx
=∫(x6+1)(x6+1)(x2+1)dx+∫x2(x2+1)(x6+1)(x2+1)dx
=∫dx(x2+1)+13∫3x2dx(x6+1)
Put, x3=t
⇒3x2dx=dt
=∫dx(x2+1)+13∫3x2dx(x3)2+1
=∫dx(x2+1)+13∫dtt2+1
=tan−1x+13tan−1(t)+c
=tan−1(x)+13tan−1(x3)+c.