∫x3+x+1x4+x2+1dx
∫[2x+12(x2+x+1)+12(x2−x+1)]dx
=12∫2x+1x2+x+1dx+12∫1x2−x+1dx
=12∫2x+1x2+x+1dx+12∫1(x−12)2+(√32)2dx
=12log∣∣x2+x+1∣∣+12×1√32tan−1x−12√32
=12log∣∣x2+x+1∣∣+1√3tan−12x−1√3+c