wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve each of the following initial value problems:
(i) (x2 + y2) dx = 2xy dy, y (1) = 0

(ii) xey/x-y+xdydx=0, ye=0

(iii) dydx-yx+cosecyx=0, y1=0

(iv) (xy − y2) dx − x2 dy = 0, y(1) = 1

(v) dydx=yx+2yx2x+y, y1=2

(vi) (y4 − 2x3 y) dx + (x4 − 2xy3) dy = 0, y (1) = 1

(vii) x (x2 + 3y2) dx + y (y2 + 3x2) dy = 0, y (1) = 1

(viii) x sin2yx-ydx+x dy=0, y1=π4

(ix) xdydx-y+x sinyx=0, y2=x

Open in App
Solution

(i) (x2 + y2)dx = 2xy dy, y(1) = 0
We have,
(x2 + y2) dx = 2xy .....(i)

This is a homogenous equation, so let us take y = vx

Then, dydx=v+xdvdxPutting y=vx in equation (i)x2+v2x2=2vx2v+xdvdxx21+v2=2vx2v+xdvdx1+v2=2v2+2vxdvdx1-v2=2vxdvdxdxx=2v dv1-v2
On integrating both sides, we get
1xdx=2v1-v2dvLet, 1-v2=t-2v dv=dtloge x=-dtt loge x=-loge t+cloge x=-loge 1-y2x2+cloge xx2-y2x2=cloge x2-y2x=cAs y1=0c=0loge x2-y2x=0x2-y2x=1x2-y2=x

(ii) xeyx-y+xdydx=0 ye=0
This is also a homogenous equation,

Put y = vx

dydx=v+xdvdxx ev-vx+xv+xdvdx=0x ev-vx+xv+x2dvdx=0x ev+x2dvdx=0ev=-xdvdxdxx=-1evdv
On integration both sides we get,
dxx=-1evdvloge x=-e-v dvlogex=e-yx+c y=vxAs given ye=0logee=e-0e+c1=1+cc=0logex=e-yx

(iii) dydx-yx+cosecyx=0, y1=0
This is an homogenous equation, put y = vx
dydx+v+xdvdxv+xdvdx-v+cosec v=0xdvdx=cosec vdvcosec v=dxxsin v dv=dxx
On integrating both sides, we get
sin v dv=dxx-cos v=logex+c-cos v+logex=ccos v+logex=-ccos yx+logex=-cAs y1=0cos 01=0+loge1=-c1+0=-cc=-1cos yx+logex=1

(iv) (xy − y2) dx − x2 dy = 0, y(1) = 1
This is an homogenous equation, put y = vx

dydx=v+xdvdxxy-y2=x2dydxvx2-v2x2=x2v+xdvdxvx21-v=x2v+xdvdxv1-v=v+xdvdxv-v2=v+xdvdx-v2=xdvdx-1xdx=1v2dv
On integrating both sides we get,
-1xdx=1v2dv-logex=v-2+1-2+1+c-logex=v-1-1+c-logex=-1v+c-logex=-1v+cxy-logex=cAs y1=111-loge1=cc=1

(v) dydx=yx+2yx2x+y, y1=1
This is an homogenous equation, put y = vx
dydx=v+xdvdx
v+xdvdx=vx+2vx2x+vxv+xdvdx=v1+2v2+vxdvdx=v1+2v-v2+v2+vxdvdx=v+2v2-2v-v22+v xdvdx=v2-v2+v2+vdvv2-v=dxx
On integrating both side of the equation we get,
2+vv2-vdv=dxx2vv-1dv+vvv-1dv=dxx211-vdv-1vdv+1v-1dv=logex+c2logev-1-logev+logev-1=logex+c2loge v-1v+logev-1=logex+c2logey-xy+logey-xx=logex+cAs y1=22 loge2-12+loge2-11=loge1+c2 loge12+loge1=loge1+c-2 loge2+0=0+c-2 loge2=c2 logey-xy+logey-xx=logex-2 loge2

(vi) (y4 − 2x3 y) dx + (x4 − 2xy3) dy = 0, y (1) = 1
This is an homogenous equation, put y= vx
v4x4-2vx4+x4-2v3x4 v+xdvdx=0v4x4-2vx4=2v3x4-x4 v+xdvdxvx4v3-2=x42v3-1 v+xdvdxvv3-2=2v3-1v+x2v3-1dvdxvv3-2-2v3+1=x2v3-1dvdxv-1-v3=x2v3-1dvdxv1+v3=x1-2v3dvdxdxx=1-2v3v1+v3dv
On integrating both side of the equation we get,
dxx=1-2v3v1+v3dvlogex=1+v3-3v3v1+v3dvlogex=1+v3v1+v3dv-3vv1+v3dvlogex=1vdv-3v21+v3dvlogex=logev-dttlogex=logev-loge1+v3+c let 1+v3=t, 3v2dv=dtlogex=logev1+v3+cAs v=yxlogex=logeyx1+y3x+clogex=logeyx2x3+y3+cAs y1=1loge1=loge11+1+c0=loge12+cc=-loge12c=loge2logex=logeyx2x3+y3+loge2

(vii) x(x2+3y2)dx +y(y2+3x2)dy = 0, y(1) = 1 dydx=-x(x2+3y2)y(y2+3x2)it is a homogeneous equation. Put y=vxand dydx=v+xdvdx

So, v+xdvdx =-x(x2+3v2x2)vx(v2x2+3x2)xdvdx=-(1+3v2)v(v2+3)-3= -1-3v2-v4-3v2v(v2+3)xdvdx=-v4-6v2-1v(v2+3)v(v2+3)v4+6v2+1dv=-dxx4v3+12vv4+6v2+1dv=-4dxxlogv4+6v2+1=logcx4v4+6v2+1=cx4y4+6y2x2+x4=c ....(1)

put y=1, x=1(1+6+1)=c c=8put c=8 in equation (1),(y4+x4+6x2y2)=8

(viii) {x sin2yx-y}dx + x dy = 0, y(1) = π4it is a homogeneous equation. so, we put y= vxdydx=v+xdvdxso, v+xdvdx=-sin2vxx+vxxxdvdx=-sin2vdvsin2v=-dxxintegrating both sides, we getcotyx=logcx
putting the values of x=1 and y=π4cotπ4=log c1=log cc=eHence, cotyx=log(ex)

(ix) xdydx-y+x sinyx=0, y(2)=πit is a homogeneous equation. put y=vxand dydx=v+xdvdxso, v+xdvdx=vxx-sinvxxxdvdx=-sinvdvsinv=-dxxcosec(v)dv=-dxxintegraing both sides we get,log(cosec(v)-cot(v))=-log x + log c
logcosecyx-cotyx=-log x + log cputting the values x=2 and y=π logcosecπ2-cotπ2=-log 2 + log cc=0logcosecyx-cotyx=-log x

flag
Suggest Corrections
thumbs-up
0
similar_icon
Similar questions
View More
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Higher Order Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon