Solve each of the following quadratic equations:
3x−47+73x−4=52, x≠43
Given:
3x−47+73x−4=52, x≠43
⇒(3x−4)2+497(3x−4)=52, x≠43
⇒9x2−24x+16+4921x−28=52, x≠43, [Since, (a−b)2=a2−2ab+b2]
⇒9x2−24x+6521x−28=52, x≠43
⇒2(9x2−24x+65)=5(21x−28)
⇒18x2−48x+130=105x−240
⇒18x2−48x+130−105x+240=0
⇒18x2−153x+270=0
⇒9(2x2−17x+30)=0
⇒2x2−17x+30=0
⇒2x2−12x−5x+30=0
⇒2x(x−6)−5(x−6)=0
⇒(x−6)(2x−5)=0
⇒x−6=0 or (2x−5)=0
⇒x=6 or x=52
Hence, 6 and 52 are the roots of the given equation.