(114x−5).32x=53−2x.7−x
Taking log on both sides give us
log(114x−5.32x)=log(53−2x7−x)
log(114x−5)+log(32x)=log(53−2x)+log(7−x)
(4x−5)log11+2xlog3=(3−2x)log5−xlog7
4xlog11+2xlog3−5log11=3log5−2xlog5−xlog7
2x(2log11++log3)−5log11=3log5−x(2log5+log7)
2x(log121+log3)=5log11+3log5−x(log25+log7)
2xlog363+xlog(175)=5log11+3log5
x(2log363+log175)=5log11+3log5
x=5log11+3log52log363+log175
Hence the value of x satisfying the above equation is,
x=5log11+3log52log363+log175