Solve for θ if 4cos2θ + 2sinθ – 4 = 0, where 0 ≤ θ ≤ 90.
0∘
30∘
both (a) and (b)
cannot be determined
4cos2θ + 2sinθ – 4 = 0
4[1 - sin2θ] + 2sinθ – 4 = 0
4 - 4sin2θ + 2sinθ – 4 = 0
2sinθ [1 - 2sinθ] = 0
sinθ = 0 or sinθ = 12 So, θ=0∘ or θ=30∘
Solve for θ if 4cos2θ + 2sinθ – 4 = 0, where 0∘ ≤ θ ≤90∘.
3tanθ + cotθ = 5cosecθ. Solve for θ, 0≤θ≤90.